Search Results/Filters    

Filters

Year

Banks




Expert Group











Full-Text


Issue Info: 
  • Year: 

    2025
  • Volume: 

    57
  • Issue: 

    2
  • Pages: 

    355-368
Measures: 
  • Citations: 

    0
  • Views: 

    10
  • Downloads: 

    0
Abstract: 

Kidney stones are solid crystals made of minerals and salts that form within the kidney, often creating a sharp, hard mass. These stones can block urine flow as they move into the urinary tract, making early detection crucial. Although deep neural Networks (DNNs) have been used to diagnose kidney stones with some success, they still face performance and standardization issues. A new approach combines Graph Convolutional Networks (GCNs) with DNNs to address these challenges. This method extracts orb features from images, converts them into Graphs, and embeds nodes using a Graph Convolutional Network, which includes a message-passing layer and node feature aggregation. The GCN updates node properties, enhancing efficiency and performance when integrated into a deep Network. This approach enables more comprehensive and precise feature extraction from images, improving kidney stone diagnosis. The study highlights GCNs' potential in analyzing medical images for diagnosing kidney stones. The proposed architecture was tested using publicly available CT scan images and demonstrated outstanding accuracy, correctly identifying kidney stones or healthy conditions in 98.6% of cases. It outperformed other advanced techniques, especially in detecting stones of various sizes, including very small ones, proving its effectiveness in medical image analysis.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 10

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2024
  • Volume: 

    20
  • Issue: 

    4
  • Pages: 

    134-146
Measures: 
  • Citations: 

    0
  • Views: 

    11
  • Downloads: 

    0
Abstract: 

Robots have become integral to modern society, taking over both complex and routine human tasks. Recent advancements in depth camera technology have propelled computer vision-based robotics into a prominent field of research. Many robotic tasks—such as picking up, carrying, and utilizing tools or objects—begin with an initial grasping step. Vision-based grasping requires the precise identification of grasp locations on objects, making the segmentation of objects into meaningful components a crucial stage in robotic grasping. In this paper, we present a system designed to detect the graspable parts of objects for a specific task. Recognizing that everyday household items are typically grasped at certain sections for carrying, we created a database of these objects and their corresponding graspable parts. Building on the success of the Dynamic Graph CNN (DGCNN) Network in segmenting object components, we enhanced this Network to detect the graspable areas of objects. The enhanced Network was trained on the compiled database, and the visual results, along with the obtained Intersection over Union (IoU) metrics, demonstrate its success in detecting graspable regions. It achieved a grand mean IoU (gmIoU) of 92.57% across all classes, outperforming established Networks such as PointNet++ in part segmentation for this dataset. Furthermore, statistical analysis using analysis of variance (ANOVA) and T-test validates the superiority of our method.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 11

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Journal: 

EBIOMEDICINE

Issue Info: 
  • Year: 

    2022
  • Volume: 

    78
  • Issue: 

    -
  • Pages: 

    0-0
Measures: 
  • Citations: 

    1
  • Views: 

    7
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 7

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2025
  • Volume: 

    4
  • Issue: 

    1
  • Pages: 

    509-516
Measures: 
  • Citations: 

    0
  • Views: 

    0
  • Downloads: 

    0
Abstract: 

Event-based load shedding (ELS) is a vital emergency countermeasure against transient voltage instability in power systems. Deep learning(DL)--based ELS has recently achieved promising results. However, in power systems, faults may occur that are not in the training database, reducing the model's effective performance. In this situation, it is necessary to update the model. On the other hand, updating the model for new faults requires a large database. To address the problem of unknown faults, this paper proposes a transfer learning-based Graph Convolutional Network (GCN) model that allows updating the model with a small database. In the first step, an ELS model is trained with a large database. Then, if a new fault occurs, the model is transferred to the new fault and updated using transfer learning and with a small database. To evaluate the performance of the proposed model, it was implemented and tested on the IEEE 39 bus system. The results show that the proposed model has high-performance accuracy and can be updated with a small database when encountering an unknown fault. According to the results, the proposed model has reduced the database size by 78.91% for optimal updating.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 0

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2025
  • Volume: 

    14
  • Issue: 

    2
  • Pages: 

    59-80
Measures: 
  • Citations: 

    0
  • Views: 

    5
  • Downloads: 

    0
Abstract: 

This paper explores Graph embedding techniques for effectively analyzing large, heterogeneous Graphs with complex and noisy patterns. Graphs represent data through nodes (entities) and edges (relationships), and when dealing with large-scale data, effective search methods are crucial. Graph embedding helps evaluate node significance and transforms data into latent space representations. It also addresses challenges like handling multi-label data in heterogeneous Networks, where nodes may have multiple labels describing complex concepts. Traditional methods struggle with such multi-label scenarios and fail to capture label dependencies. The paper introduces a Graph Neural Network (GCN)-based node embedding method, which extends traditional neural Networks to Graph data. GCNs allow the extraction of local features from nodes and their neighbors, making them useful for heterogeneous Networks. By integrating label information into the embedding process, the method improves relationships between labels. The proposed approach transforms neighboring labels into continuous vectors, structured into a matrix for learning. This enhances the overall Network embedding. The method outperforms previous techniques, demonstrating improved performance on real-world datasets, such as a 2.4% improvement on the IMDB dataset and 9.3% on the DBLP dataset. The paper discusses Graph embedding techniques in the first section and explores the potential of multi-label embedding in non-uniform Graphs, suggesting future research directions in the final section. The article's code link on GitHub can also be found at the following: https://github.com/frshkara/EGSA.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 5

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2023
  • Volume: 

    11
  • Issue: 

    1
  • Pages: 

    53-67
Measures: 
  • Citations: 

    0
  • Views: 

    54
  • Downloads: 

    3
Abstract: 

Deep Convolutional neural Networks (CNNs) have attained remarkable success in numerous visual recognition tasks. There are two challenges when adopting CNNs in real-world applications: a) Existing CNNs are computationally expensive and memory intensive, impeding their use in edge computing; b) there is no standard methodology for designing the CNN architecture for the intended problem. Network pruning/compression has emerged as a research direction to address the first challenge, and it has proven to moderate CNN computational load successfully. For the second challenge, various evolutionary algorithms have been proposed thus far. The algorithm proposed in this paper can be viewed as a solution to both challenges. Instead of using constant predefined criteria to evaluate the filters of CNN layers, the proposed algorithm establishes evaluation criteria in online manner during Network training based on the combination of each filter’s profit in its layer and the next layer. In addition, the novel method suggested that it inserts new filters into the CNN layers. The proposed algorithm is not simply a pruning strategy but determines the optimal number of filters. Training on multiple CNN architectures allows us to demonstrate the efficacy of our approach empirically. Compared to current pruning algorithms, our algorithm yields a Network with a remarkable prune ratio and accuracy. Despite the relatively high computational cost of an epoch in the proposed algorithm in pruning, altogether it achieves the resultant Network faster than other algorithms.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 54

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 3 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

FEIZI A.

Issue Info: 
  • Year: 

    2019
  • Volume: 

    32
  • Issue: 

    7 (TRANSACTIONS A: Basics)
  • Pages: 

    931-939
Measures: 
  • Citations: 

    0
  • Views: 

    158
  • Downloads: 

    74
Abstract: 

Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining Convolutional neural Networks (CNNs), which allows the proposed method to learn the features with high discriminative power and geometrical independence. In the training phase, the CNNs are first pre-trained in each of the camera views, and a Convolutional gating Network (CGN) is simultaneously pre-trained to produce a weight for each CNN output. The CNNs are then transferred to the tracking task where the pre-trained parameters of the CNNs are re-trained by using the data from the tracking phase. The weights obtained from the CGN are used in order to fuse the features learnt by the CNNs and the resulting weighted combination of the features is employed to represent the objects. Finally, the particle filter is used in order to track objects. The experimental results showed the efficiency of the proposed method in this paper.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 158

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 74 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

Nemati S.

Issue Info: 
  • Year: 

    2024
  • Volume: 

    12
  • Issue: 

    1
  • Pages: 

    57-68
Measures: 
  • Citations: 

    0
  • Views: 

    18
  • Downloads: 

    4
Abstract: 

Background and Objectives: Twitter is a microblogging platform for expressing assessments, opinions, and sentiments on different topics and events. While there have been several studies around sentiment analysis of tweets and their popularity in the form of the number of retweets, predicting the sentiment of first-order replies remained a neglected challenge. Predicting the sentiment of tweet replies is helpful for both users and enterprises. In this study, we define a novel problem; given just a tweet's text, the goal is to predict the overall sentiment polarity of its upcoming replies.Methods: To address this problem, we proposed a Graph Convolutional neural Network model that exploits the text's dependencies. The proposed model contains two parallel branches. The first branch extracts the contextual representation of the input tweets. The second branch extracts the structural and semantic information from tweets. Specifically, a Bi-LSTM Network and a self-attention layer are used in the first layer for extracting syntactical relations, and an affective knowledge-enhanced dependency tree is used in the second branch for extracting semantic relations. Moreover, a Graph Convolutional Network is used on the top of these branches to learn the joint feature representation. Finally, a retrieval-based attention mechanism is used on the output of the Graph Convolutional Network for learning essential features from the final affective picture of tweets.Results: In the experiments, we only used the original tweets of the RETWEET dataset for training the models and ignored the replies of the tweets in the training process. The results on three versions of the RETWEET dataset showed that the proposed model outperforms the LSTM-based models and similar state-of-the-art Graph Convolutional Network models. Conclusion: The proposed model showed promising results in confirming that by using only the content of a tweet, we can predict the overall sentiment of its replies. Moreover, the results showed that the proposed model achieves similar or comparable results with simpler deep models when trained on a public tweet dataset such as ACL 2014 dataset while outperforming both simple deep models and state-of-the-art Graph Convolutional deep models when trained on the RETWEET dataset. This shows the proposed model's effectiveness in extracting structural and semantic relations in the tweets.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 18

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 4 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

AMERI ALI

Issue Info: 
  • Year: 

    2020
  • Volume: 

    78
  • Issue: 

    4
  • Pages: 

    207-211
Measures: 
  • Citations: 

    0
  • Views: 

    1021
  • Downloads: 

    0
Abstract: 

Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC-Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’ s disease)-are common noninvasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed to propose a computer-based model for identification non-melanoma malignancies. Methods: In this analytic study, 327 AKIEC, 513 BCC, and 840 benign keratosis images from human against machine with 10000 training dermoscopy images (HAM10000) were extracted. From each of these three types, 90% of the images were designated as the training set and the remaining images were considered as the test set. A deep learning Convolutional neural Network (CNN) was developed for skin cancer detection by using AlexNet (Krizhevsky, et al., 2012) as a pretrained Network. First, the model was trained on the training images to discriminate between benign and malignant lesions. In comparison with conventional methods, the main advantage of the proposed approach is that it does not need cumbersome and time-consuming procedures of lesion segmentation and feature extraction. This is because CNNs have the capability of learning useful features from the raw images. Once the system was trained, it was validated with test data to assess the performance. Study was carried out at Shahid Beheshti University of Medical Sciences, Tehran, Iran, in January and February, 2020. Results: The proposed deep learning Network achieved an AUC (area under the ROC curve) of 0. 97. Using a confidence score threshold of 0. 5, a classification accuracy of 90% was attained in the classification of images into malignant and benign lesions. Moreover, a sensitivity of 94% and specificity of 86% were obtained. It should be noted that the user can change the threshold to adjust the model performance based on preference. For example, reducing the threshold increase sensitivity while decreasing specificity. Conclusion: The results highlight the efficacy of deep learning models in detecting non-melanoma skin cancer. This approach can be employed in computer-aided detection systems to assist dermatologists in identification of malignant lesions.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1021

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 5
Issue Info: 
  • Year: 

    2021
  • Volume: 

    7
Measures: 
  • Views: 

    320
  • Downloads: 

    0
Abstract: 

These days deep learning methods play a pivotal role in complicated tasks, such as extracting useful features, segmentation, and semantic classification of images. These methods had significant effects on flower types classification during recent years. In this paper, we are trying to classify 102 flower species using a robust deep learning method. To this end, we used the transfer learning approach employing DenseNet121 architecture to categorize various species of oxford-102 flowers dataset. In this regard, we have tried to fine-tune our model to achieve higher accuracy respect to other methods. We performed preprocessing by normalizing and resizing of our images and then fed them to our fine-tuned pretrained model. We divided our dataset to three sets of train, validation, and test. We could achieve the accuracy of 98. 6% for 50 epochs which is better than other deep-learning based methods for the same dataset in the study.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 320

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button